Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:
In the field of computational chemistry, energy minimization (also called energy optimization, geometry minimization, or geometry optimization) is the process of finding an arrangement in space of a collection of atoms where, according to some computational model of chemical bonding, the net inter-atomic force on each atom is acceptably close to zero and the position on the potential energy surface (PES) is a stationary point (described later). The collection of atoms might be a single molecule, an ion, a condensed phase, a transition state or even a collection of any of these. The computational model of chemical bonding might, for example, be quantum mechanics.
As an example, when optimizing the geometry of a water molecule, one aims to obtain the hydrogen-oxygen bond lengths and the hydrogen-oxygen-hydrogen bond angle which minimize the forces that would otherwise be pulling atoms together or pushing them apart.
The motivation for performing a geometry optimization is the physical significance of the obtained structure: optimized structures often correspond to a substance as it is found in nature and the geometry of such a structure can be used in a variety of experimental and theoretical investigations in the fields of chemical structure, thermodynamics, chemical kinetics, spectroscopy and others.
Typically, but not always, the process seeks to find the geometry of a particular arrangement of the atoms that represents a local or global energy minimum. Instead of searching for global energy minimum, it might be desirable to optimize to a transition state, that is, a saddle point on the potential energy surface. Additionally, certain coordinates (such as a chemical bond length) might be fixed during the optimization.